LONGITUD DE ARCO EJERCICIOS RESUELTOS

 

 







1. Calcule la longitud de un arco en un sector circular cuyo ángulo central mide 1º y su radio mide 1800 cm.

A) m B)  m C)  m
D) m E)  m

RESOLUCIÓN

Si:
  ; 1800 cm = 18 m

Se pide:

RPTA.: D

2. Se muestra sectores circulares concéntricos, donde S representa área, obtener x. si S = 8L²

A) 2 L
B) 4 L
C) 5 L
D) 6 L
E) 8 L

RESOLUCIÓN
S = 8 L²

RPTA.: C

3. Si: AB + CD = 26. Halle el área del sector circular EOF.


A) 1
B) 2
C) 3
D) 4
E) 6

RESOLUCIÓN

RPTA.: D

4. Una regadera instalada en un parque, tiene un alcance de 8 m y barre un ángulo de 120g. Calcule el área del sector circular que genera esta regadera.

A) 19,2  m² B) 17,6  m²
C) 18,9  m² D) 12,6  m²
E) 14,4  m²

RESOLUCIÓN
Si: 120g =
Se pide:

S = 19,2  m²
RPTA.: A

5. Si CAE es un sector circular y

A) 2
B) 3
C) 4
D) 5
E) 6

RESOLUCIÓN
Se pide:

V = 3
RPTA.: B

6. Si a un sector circular le cuadruplicamos su ángulo central y aumentamos 5 m   a su radio, se obtendrá un nuevo sector circular que tiene un área que es 49 veces el área del sector circular inicial. Determine el radio del nuevo sector.

A) 2 m B) 3 m C) 5 m
D) 7 m E) 9 m

RESOLUCIÓN
Inicialmente:

Finalmente:


RPTA.: D


7. Halle el área sombreada:

A)
B) 2 
C) 3 
D) 4 
E) 5 

RESOLUCIÓN
Sx = SAOB  SCOD

RPTA.: C

8. Calcule: E = x³  x²  1, si:

A) 5 B) 6 C) 7
D) 8 E) 9

RESOLUCIÓN

RPTA.: E

9. En la figura, el trapecio circular ABCD y el sector circular COD tienen igual área. Halle:

RESOLUCIÓN
RPTA.: A

10. Se tiene un sector circular y un cuadrado, con equivalente área e igual perímetro; luego la medida, en radianes, de su ángulo central correspondiente resulta ser:

A) 1 rad B) 2 rad C)
D) 4 rad E)  rad

RESOLUCIÓN
Condiciones:
ii) Perímetro = Perímetro

RPTA.: B

11. De   la   figura mostrada, AOF, BOE y COD son sectores circulares, además:

BC = DE = a, AB = EF = 2a,

Calcule: M = (2x + z) y1

A) 1
B) 2
C) 3
D) 4
E) 5

RESOLUCIÓN

De la figura:

Luego:

RPTA.: C

12. Calcule:
Donde S1, S2 y S3 son las áreas de las regiones sombreadas

RESOLUCIÓN

S1 = 2S
S2 = 3S
S3 = 10S


RPTA.: B

13. Dos postulantes de la UNAC, observan un reloj eléctrico cuyas agujas están detenidas, luego de la falla eléctrica en el Callao, uno de   los estudiantes dice que el área que  hacen   las   agujas es de 7,2 m² y si el reloj tiene un radio de 6 m. ¿Cuál será el arco entre las agujas?
Considere

RESOLUCIÓN
RPTA.: A

14. Se tiene una bicicleta cuyas ruedas tienen por radios R1 y R2 (R1 < R2); cuando la rueda menor gira º la mayor gira g. ¿En qué relación se encuentra los radios?
RESOLUCIÓN
Si 1 y 2 son los ángulos que giran la rueda menor y mayor respectivamente.
En una bicicleta se cumple que:

RPTA.: C

15. Se tienen dos ruedas conectadas por una faja; si hacemos girar la faja, se observa que las ruedas giran ángulos que suman 144º. Determine la diferencia de los números de vueltas que dan estas ruedas  si sus radios miden 3 m y 5 m
A) B)   C)
D) E)  

RESOLUCIÓN
1 + 2 = 144º
L1 = L2  1R1 = 2R2

RPTA.: E


16. En el sistema mostrado, si la rueda A da   de vuelta, entonces la longitud recorrida por la rueda C es:

A) 3,6  B) 36  C) 1,8 
D) 18  E)  

RESOLUCIÓN

* A  B:
 LA = LB
       ARA = BRB
 

* B   C:
B = C =
     
RPTA.: B

17. Determine el área de la región sombreada, sabiendo que las áreas de los sectores AOB y COD son iguales ( y  en radianes)

RESOLUCIÓN

S + Sx = ST
Sx = ST  S

RPTA.: A

18. Del gráfico, halle el número de vueltas que dará una ruedita de radio 1,  al  ir  de  A  hasta B si CB = 8 y AOC es un sector circular.

A) 2 B) 3 C) 4
D) 5 E) 6

RESOLUCIÓN

L1  + L2 = 2 (1) . N

RPTA.: D

19. Halle el número de vueltas que da la rueda de radio (r = 1) al ir de la posición A hasta la posición B.

A) 85 B) 9 C) 10
D) 10,5 E) 11

RESOLUCIÓN

Sabemos: r = () (21) = 21
# vueltas =
#v = 10,5

RPTA.: D

20. De la figura mostrada, la rueda de radio r, gira sin resbalar sobre la superficie de radio 240 r. ¿Cuál es la longitud recorrida por el centro de la rueda hasta que el punto B este en contacto con la superficie de la curva, si:  m AOB = 120º, r = 18u?
A) 24  B) 24,1 C) 24,2
D) 24,3 E) 24,4


RESOLUCIÓN
De la figura:

L = 24,1 
RPTA.: B

21. Sobre una superficie curva de radio “R” gira una rueda cuyo radio es “r” (ver figura). Si dicha rueda da una vuelta al ir de “M” a “N”. Calcule la longitud del arco MN. (  son centros).


RESOLUCIÓN


Del gráfico:
RPTA.: D

22. Dos móviles A y B parten al mismo tiempo y en las direcciones indicadas en la figura de los puntos P y Q respectivamente, si la velocidad de A es a la velocidad de B como 3 es a 7. Calcule cuando mide “” si se encuentran por 1era. vez en el punto R.

A) rad
B) rad
C)  rad
D) rad
E)   rad
RESOLUCIÓN
Espacio recorrido por el móvil A será   y del móvil B es el arco  .
eA = VAtA   y  eB = VBtB

Pero ambos parten al mismo tiempo tA = tB


Reemplazando:


RPTA.: D